Migraines, magnesium, and brown rice

Migraines, magnesium, and brown rice

Soon after I published Food As Medicine in 2011, I received an email from a reader, who wrote about her experience with migraines and magnesium. A long-time lacto-ovo vegetarian, she told me that she took supplemental magnesium each month to control her premenstrual migraines, and that it was the only thing that worked for her.

To be sure, it’s been known for years that magnesium can be helpful in the prevention of premenstrual migraines. Several studies have shown that low serum magnesium is an independent risk factor for migraine headaches, and that magnesium can be used therapeutically to both prevent and treat migraines, as well as a host of other disorders characterized by spasm.

She couldn’t understand why she might be magnesium-deficient, however, because she ate a lot of brown rice, and had been told that brown rice was high in magnesium. According to nutritiondata.com, rice indeed tops the list of all magnesium-containing foods, at 781 mg per 100 mg. Although this refers specifically to just the bran and not the whole grain cereal itself, brown rice still weighs in at a respectable 143 mg of magnesium per 100 g serving. Thus if she ate about three cups of cooked brown rice (about 550 g) on a daily basis, she should have been getting more than 780 mg of magnesium, which is a significant dose by any standard.
brown_rice

It was only after this woman read the sections in Food As Medicine that discuss the importance of fermenting cereals to enhance nutrient absorption, that she put two and two together. Following the instructions in the book (see below), she began to ferment her brown rice before cooking, and a few weeks later noticed that she didn’t experience the same intensity of premenstrual migraines. Inspired by her results, she continued to practice this technique for the next two months, reporting to me in her email that her migraine issues were apparently resolved. Any of my students enrolled in my Food As Medicine program won’t find this to be much of a surprise. One of the central tenets of my nutritional approach is that our issue with diet and its disease-causing potential is a direct result of industrial technologies supplanting traditional methods of food preparation.

All seeds (or more properly ‘fruits’), whether they be cereals, legumes, nuts, or what conventionally call “seeds”, contain a host of natural plant chemicals that serve to discourage predation by animals. This is done to ensure reproductive success, and while this strategy isn’t necessarily effective against all predators, such as insects and birds, it has been very successful against mammalian predators. The extensive grasslands found all over the world are a testament to just how effectively grass seed resists mammalian digestion, and how the grass actually uses these predators to spread it further afield. Such is the strategy of many plants, that sacrifice a part of themselves to ensure the distribution of their genetic material, hopefully dispersed intact, contained within a nutrient-dense clump of “fertilizer”.

bison_grass

Among mammals, however, humans are unique  for our relatively recent practice of consuming cereal and legume crops as staples. While a variety of seeds have long been a part of the human diet, the proportion consumed for pre-agrarian peoples was much lower when compared to the farming folk that began to emerge during the 9-10th millennia BCE. The archeological record shows that in every measurable way human health declined with this transition, with clear evidence of physical degeneration, including a loss of height and bone density, and a dramatic increase in dental and skeletal problems.

While this issue of diet and physical degeneration remains perennial throughout the history of human agriculture, the problem stabilizes and begins to reverse as early farming societies discovered the importance of using food preparation techniques such as fermentation, to increase digestibility and nutrient absorption. Since this time, traditional agricultural societies have maintained an unbroken practice of using such techniques to process cereals and legumes, and optimize health. Besides the traditional sourdough breads of Europe, examples of this can be seen all over the world, in traditional foods such as chocolate (from cacao, Central America), ogi (from sorghum, West Africa), injera (from teff, East Africa; pictured below), idli (from rice and urad, South India), and natto (from soy, Japan).

injera_2

As I articulated earlier, the global exportation of industrial food technologies has meant that much of this knowledge is rapidly disappearing or has been lost entirely. In all of the regions I mention above, industry has either begun to or has entirely supplanted these traditions, as it has in Westernized, ‘First-world’ nations. As a result, we can see how Westernized patterns of disease have crept into these societies, to promote an increasing prevalence of digestive, cardiometabolic, and autoimmune disease. Billions and billions of research dollars are spent each year trying to find a cure for these diseases, when in many cases the cause is entirely related to a loss of traditional knowledge and practices. In 2011, I made the point in Food As Medicine that when wheat is properly fermented, it no longer elicits an immunological reaction in patients diagnosed with celiac disease. This demonstrates that the cause of celiac disease is directly related to a failure to maintain traditional food practices. In my opinion, this finding is just the tip of the iceberg in a huge range of digestive and inflammatory disorders that could otherwise be prevented.

Of course this epiphany for the most part continues to elude modern science, which due to monied interests and its myopic pursuit speculative, novel solutions, has little time for moldy old traditions like food fermentation. But in my clinical experience, and as demonstrated by this woman’s experience with brown rice, we continue to ignore traditional wisdom at the peril of chronic disease.

In Food As Medicine, I discuss two basic methods to ferment cereals and legumes. One way to prepare them is to half-cook them first, and then ferment them in a brine, using some leftover live-culture pickle juice as an inoculant. The last part of the following video (start at 4:47) describes the technique for fermenting cooked chickpeas:

While this makes for a very satisfying result, especially for making bean dishes like hummus, it does take several weeks before its ready. Another technique I mention is a pre-cooking fermentation method, that once you’ve got an inoculum going, only takes 24 hours to prepare. Here it is, taken from the book, Food As Medicine:

Fermentation is a key step in ensuring the digestibility of foods such as cereals, legumes, nuts and seeds all of which contain antinutrient factors (ANFs) such as phytic acid and trypsin inhibitors that impair digestion and inhibit the absorption of nutrients.  The procedure to ferment these foods begins with making a starter.  Soak the nut, seed, grain or legume in water for 24 hours at 86˚F/30˚C, in a ceramic or glass container.  If you don’t live in a tropical climate you will need to use something to keep the ferment warm enough, such as an electric heat mat used for sprouting and germinating seeds.  After 24 hours, drain off the liquid, but set aside one cup of the soaking water for later use.  Rinse the nut, seed, grain or legume, and prepare as normal. 

fermented_rice_6

The cup of soaking liquid that you reserved is full of bacteria, and becomes an inoculum (bacterial culture) for the next batch. Repeat the same process with fresh ingredients, but add the inoculum to the soaking water, and let sit at 86˚F/30˚C for 24 hours.  After, drain the soaking water and cook as normal, but retain a cup of the soaking water for the next batch. If you keep doing this, by the fourth time you will have an inoculum that is capable of reducing ANFs such as phytic acid by 96%.[1]  While fermentation reduces ANFs, however, it does not remove components such as lectins,[1] and thus the nut, seed, grain or legume usually requires additional measures such as cooking.

Once you have created a viable inoculum, you can store it in a covered vessel the refrigerator for up to a week before it will die, but add a handful of brown rice to give it some food.

[1] Liang J, Han BZ, Nout MJR, Hamer RJ. 2008. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry. 110(4): 821-828
[2] Sharma A, Sehgal s. 1992. Effect of processing and cooking on the antinutritional factors of faba bean (Vicia faba). Food Chemistry. 43(5):383-385  

So try it out… whether you ferment before or after cooking, doing so will go a long way to improve gut health, and diminish chronic inflammation.

Does glyphosate cause celiac disease?

Does glyphosate cause celiac disease?

A recent paper published in Interdisciplinary Toxicology suggests that Monsanto’s glyphosate may be a direct causative factor in the development of celiac disease. In their review, the authors provide evidence that glyphosate provokes celiac disease through a number of mechanisms:

1. Gut bacteria: Celiac patients often exhibit problems with impaired gut ecology, leading to alterations in bowel function that provoke clinical symptoms. In several animal studies, glyphosate has been shown to be directly toxic to probiotic organisms, facilitating the growth of gut pathogens including Clostridium difficile.

2. Inhibition of cytochrome P450 (CYP): Glyphosate has been shown to inhibit CYP enzymes in the liver, which act to detoxify a variety of poisons acquired from our diet and the environment. Inhibition of CYP not only increases susceptibility to toxins, it also impairs the hydroxylation of vitamin D3. A deficiency of vitamin D3 can be found in as much as 60% of the population that live in northern climates such as Canada, linked to metabolic disorders such as heart disease, and autoimmune disease such as multiple sclerosis. At the same time, glyphosate-induced deficiency of CYP enzymes could lead to increases in retinoic acid, a metabolite of vitamin A that quickly becomes toxic, and may contribute to the pathology of celiac disease. Inhibition of the liver and CYP enzymes by glyphosate could also disrupt the transport of sulfate from the gut to the liver and pancreas, resulting in reduced bile acid production, liver damage, pancreatic inflammation, and damage to the intestinal villi.

3. Nutrient deficiencies: Glyphosate may promote a broad range of nutrient deficiencies commonly seen in celiac disease. Glyphosate has been shown to chelate vital minerals in the GI tract, including iron, molybdenum, and selenium, leading to an increased risk of iron-deficiency anemia, venous thrombosis, and thyroid disorders, all of which are common issues in patients with celiac disease. Other nutrient deficiencies commonly seen in celiac disease also appear to be linked to glyphosate, which disrupts the synthesis of key amino acids in food plants, including tryptophan, tyrosine and methionine, as well as the uptake of iron, magnesium, manganese and calcium.

These are only a few of the points raised by the paper. There is also mention that celiac patients have an increased risk of non-Hodgkin’s lymphoma, the incidence of which has been steadily rising since glyphosate was first introduced in the 1970s. And in a similar fashion, the authors provide a chart showing that the incidence of celiac disease has risen and decreased in direct proportion to glyphosate use, possibly explaining what appears to be the sudden phenomena of widespread gluten intolerance.

warning_monsantoSo what do I think of the paper? What is immediately striking is that some of the arguments are little more than conjectures, and hence are subject to a great deal of interpretation. It doesn’t help that neither of the authors are medical practitioners nor established experts in the field, and so doubts will be raised about their paper, particularly because the journal that published it, Interdisciplinary Toxicology, isn’t what I would call a mainstream publication. As such, the conclusions of the authors need to be taken with a grain of salt, realizing that the research doesn’t point so much to a smoking gun, as it provides some thought-provoking ideas that needs follow-up from other researchers.

I am no fan of Monsanto, a huge multinational conglomerate that time and again has been found guilty of the agricultural equivalent of piracy. But do I think that Monsanto’s glyphosate is the cause of celiac disease? Perhaps… this review seems rather adamant, and I worry about having too myopic of a focus. We often use terms like “cause” in an exclusive way, not fully comprehending that disease, like life, is multifactoral. Thus while glyphosate could contribute to the incidence of celiac disease and gluten intolerance, there are other explanations as well, apart from the inherent toxicity of this storage protein.

One under-explored mechanism I discuss in Food As Medicine is the inherent toxicity of ALL seeds – essentially – because seeds contain a variety of toxins to discourage predation. Think about it: seeds are little babies, the future of the species, and would any mother send their children off into the world without some kind of protection? Nope – which is why seeds contain a hard waxy coating and are impregnated with a plethora chemicals that are inherently toxic, or do things like inhibit digestion and absorption. There are many many examples of these constituents, including toxic storage proteins, lectins, phytic acid, and non-protein amino acids. Humans are the only mammals to selectively eat and attempt to digest small seeds. To be sure: a cow or a horse may swallow seeds while grazing, but most of the seeds are eliminated undigested in the animal’s stool. This is all part of the dalliance between plants and animals for millions of years, and the plants’ grand design to promote seed distribution.

With the advent of the agricultural revolution 9000 years ago, humans began to selectively eat seeds that we had never eaten before, in large quantities and on a chronic basis. And in so doing, the archeological record shows that our ancestors experienced a dramatic decline in health and longevity, from a life expectancy of around 54 in hunter-gatherers, to around 20 in neolithic farmers. Commensurate with this decrease in longevity was a reduction both body mass and height, as well as an increase in infectious disease, infant mortality, increase in iron deficiency anemia, osteomalacia, dental caries and enamel defects (Cordain 1999).

The basic signs and symptoms of celiac disease have been around for a very long time. In the agrarian society of ancient India, a disease called grahani was described in the texts of Ayurveda, characterized by digestive weakness, chronic diarrhea and weight loss. In ancient Greece, the physician Aretaeus of Cappadocia described a condition called ‘koiliakos’ that resembles celiac disease, bolstered by archeological evidence that celiac disease was found in the Mediterranean (Gasbarrini et al 2012). More recently, a disease called pellagra that has a very similar progression to celiac disease ravaged the south-eastern United states for almost a hundred years, before the cause was determined to be improperly processed corn. Like our experiment with pellagra in the late 19th century, the spectre of widespread gluten intolerance has only arisen since we abandoned traditional methods of food preparation, such as the fermentation of wheat. Similar to the nixtamalization of corn, which prevents pellagra, fermenting wheat not only hydrolyzes gluten into harmless amino acids, but along with cooking, helps to denature the many anti-nutrient factors that have interfere with digestion and absorption. Traditional methods of food preparation such as fermentation have demonstrated their merit in clinical research, showing that when wheat is properly fermented, it can be safely given to celiacs without causing any clinical symptoms (Di Cagno et al 2004). I believe that once we restore these traditional methods of food processing, the incidence of gluten intolerance that has steadily increased over these last few generations will begin to decline. However, as this paper illustrates, there may be other factors in celiac disease, and if the suggestions of the authors prove true, it should be even more incentive to governments to ban the use of glyphosate.

References
Cordain L. 1999. Cereal grains: humanity’s double-edged sword. World Rev Nutr Diet. 84:19-73.
Di Cagno R. et al. 2004. Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol. 70(2):1088-96.
Gasbarrini G et al. 2012. Origin of celiac disease: how old are predisposing haplotypes? World J Gastroenterol. 18(37):5300-4.

Old-fashioned Sauerkraut

Old-fashioned Sauerkraut

Sauerkraut is the classic food of Eastern Europe, derived from the German term for ‘soured cabbage’. Like many leafy greens the cabbage is a hybrid of the wild mustard (Brassica oleracea), and its healing and medicinal virtues have long been extolled by the ancients. Of cabbage, Cato the Elder claimed many uses: in the treatment of digestive disorders and colic, as well as arthritis, ulcers, nasal polyps, deafness and tumors, and applied topically as a poultice for wounds, sores and infection. In the 1950s, raw cabbage juice caught the attention of researchers, and was found to have anti-ulcer and anti-inflammatory effects in the digestive tract. Like rapini and other brassicas, cabbage contains organosulfur compounds including phenethyl isothiocyanate and sulforaphane that have been shown to have potent antioxidant and anti-tumor properties.

Given the rather ubiquitous presence of cabbage and cabbage-like sisters including sui choy all over the world, it is no surprise there is such a diversity of live culture cabbage dishes, from the traditional European sauerkraut, to Kimchi (p. 186) in Korea. The following recipe favors the European palette, and contains herbs that are good for relieving gas and bloating, but can just as easily be left out for a simpler flavor.

Ingredients
2 lbs. grated cabbage (~ one cabbage head)
1 onion, chopped fine
1 tbsp. salt
½ tsp. dill seed
½ tsp. savory seed
½ tsp. coriander seed
½ tsp. black pepper
½ tsp. caraway seed

Directions
Mix the grated cabbage and onion in a large, clean mixing bowl with clean hands, and add in the salt and herbs. Knead and squeeze the vegetables well for about 5 minutes, ensuring that everything is well mixed and sloppy, as the salt and kneading will pull a lot of the water out of the veggies. Stuff this mixture into a clean, dry, large wide-mouth mason jar, pressing down as you add each handful, allowing the juices to rise above the level of the vegetables. Seal the jar and set it aside for 1-2 hours, and then with clean hands, push down again on the mixture so that more brine rises to the surface. If there isn’t enough brine, top up the jar with some water, seal the jar and shake well, ensuring that the veggies are now lying below the surface of the brine. Any material that lies above the surface of the brine may get moldy. Put the jar aside, but make sure to open the lid and release the (stinky) gasses that accumulate a few times a day, for the first few days. The ferment is typically established within 4-5 days, after which you can drain off any excess liquid that you added. Reseal and set aside for 2-3 weeks and then enjoy, storing in the fridge to preserve the flavor and prevent it from becoming too sour.